ON A SUFFICIENT CONDITION FOR THE STABILITY OF THE TRIVIAL SOLUTION OF A SYSTEM OF THO LINEAR DIFFERENTIAL EQUATIONS

 (OB ODNOM DOSTATOCHNOM USLOVII USTOICHIVSTI

 (OB ODNOM DOSTATOCHNOM USLOVII USTOICHIVSTI TRIVIAL' NOGO RESHENIIA SISTEMY IZ DVUKH TRIVIAL' NOGO RESHENIIA SISTEMY IZ DVUKH LINEINYKH DIFFERENTSIAL'NYKH URAVNENII)

 LINEINYKH DIFFERENTSIAL'NYKH URAVNENII)}

```
PMM Vol.25, No.4, 1961, pP. 791-793
```

N. P. KUPTSOV
(Saratov)
(Received Novenber 24, 1960)

We consider the equation

$$
\begin{equation*}
\ddot{x}+p(t) \dot{x}+q(t) x=0 \tag{1}
\end{equation*}
$$

for which there are known a large number of various types of sufficient conditions for the stability of its trivial solution [1]. In particular, a simple and convenient criterion of the Liapunov type was established by Leonov [2] (see also [3,4]): if

$$
q(t)>0, \quad p(t)+\frac{\dot{q}(t)}{2 q(t)} \geqslant 0
$$

then the solutions of Equation (1) is stable* relative to x.
In the present note there is derived a new sufficient condition for stability, which generalizes the above-mentioned criterion of Leonov.

Suppose we are given the system of linear differential equations

$$
\begin{equation*}
\dot{x}=a_{11}(t) x+a_{12}(t) y, \quad \dot{y}=a_{21}(t) x+a_{22}(t) y \tag{2}
\end{equation*}
$$

with piecewise continuous coefficients. Let us consider the quadratic form

$$
\begin{equation*}
U=A(t) x^{2}+2 B(t) x y+C(t) y^{2} \tag{ii}
\end{equation*}
$$

* In order to have stability with respect to \dot{x} it is necessary to have some additional requirements (for example, the boundedness of $\dot{q}(t)$ on ($0, \infty$) (see [4, pp. 372-373].j
whose coefficients satisfy the system of linear equations

$$
\begin{align*}
& \dot{A}=-2 a_{11} A-2 a_{21} B \\
& \dot{B}=-a_{12} A-\left(a_{11}+a_{22}\right) B-a_{21} C \tag{4}\\
& \dot{C}=-2 a_{12} B-2 a_{22} C
\end{align*}
$$

with the initial conditions

$$
\begin{equation*}
A(0)=A_{0}>0, \quad B(0)=B_{0}, \quad C(0)=C_{0}>0, \quad A_{0} C_{0}-B_{0}^{2}>0 \tag{5}
\end{equation*}
$$

Let us set $\Delta t=A(t) C(t)-B^{2}(t)$. Differentiating $\Delta(t)$ and taking account of (4), we obtain

$$
\Delta(t)=-2\left(a_{11}+a_{2 \Omega}\right) \Delta(t)
$$

Whence

$$
\begin{equation*}
\Delta(t)=\Delta(0) \exp \left[--2 \int_{0}^{t}\left(a_{11}+a_{22}\right) d \tau\right] \tag{6}
\end{equation*}
$$

Therefore, $A(t)>0$, and $C(t)>0$ when $t>0$. From this it follows that for $t>0$ the equation

$$
A(t) x^{2}+2 B(t) x y+C(t) y^{2}=\text { const }
$$

determines some ellipse in the $x y$-plane.
If we substitute a solution of (2) for x and y in Formula (3), then U will be independent of t (this fact can easily be verified by differentiating U with respect to t. Let us assume that along the given solution $x(t), y(t)$ of the system (2), the value of U is equal to U_{0}. This means that the point $x(t), y(t)$ lies on the ellipse

$$
A(t) x^{2}+2 B(t) x y+C(t) y^{2}=U_{0}
$$

The point with maximum abscissa (ordinate) on this ellipse has the coordinates

$$
\begin{align*}
& \sqrt{\left.\frac{\left(\overline{I_{n} C(l)}\right.}{\Delta(l)},-B(l) \sqrt{\frac{U_{n}}{C(l) \Delta(l)}}\right\}} \quad\left(\left\{-B(t) \sqrt{\frac{U_{0}}{C(t) \Delta(l)}}, \sqrt{\left.\left.\frac{\overline{U_{0} A(l)}}{\Delta(l)}\right\}\right)}\right.\right. \\
& \text { Therefore } \tag{7}\\
& |x(l)| \leqslant \sqrt{U_{0} \frac{C(t)}{\Delta(l)}}, \quad|y(t)| \leqslant \sqrt{U_{0} \frac{A(l)}{\Delta(l)}}
\end{align*}
$$

For the boundedness of $x(t)$ on ($0, \infty$) it is, therefore, sufficient that the expression $C(t) / \Delta(t)$ be bounded on ($0, \infty$). The system (2) is linear. Hence, we draw the following conclusion on the basis of the
preceding statements: in order that the trivial solution of the system (2) be stable relative to x, it is sufficient that $C(t) / \Delta$ (t) be bounded on $(0, \infty)$.

It is not difficult to prove that the boundedness of $C(t) / \Delta(t)$ on $(0, \infty)$ is also necessary for the stability of the trivial solution of (2) relative to x. In fact, suppose that we have this stability. Then there exists a constant M such that for every solution of the system (2) which satisfies the condition

$$
\begin{equation*}
A_{0} x^{2}(0)+2 B_{0} x(0) y(0)-\vdash C_{0} y^{2}(0)=1 \tag{8}
\end{equation*}
$$

it is true that $|x(t)| \leqslant M$ for all $t>0$.
A solution of the system (2) which satisfies the conditions

$$
x\left(t_{0}\right)=\sqrt{\frac{C\left(t_{0}\right)}{\Delta\left(t_{0}\right)}}, \quad y\left(t_{0}\right)^{n}==-B\left(t_{0}\right) \sqrt{\frac{1}{C\left(t_{0}\right) \Delta\left(t_{0}\right)}}
$$

will also satisfy the equation $A\left(t_{0}\right) x^{2}\left(t_{0}\right)+2 B\left(t_{0}\right) x\left(t_{0}\right) y\left(t_{0}\right)+$ $C\left(t_{0}\right) y^{2}\left(t_{0}\right)=1$.

Since the function U is constant along every solution of Equation (2). we obtain (8)

$$
A_{0} x^{2}(0)+2 R_{0} x(0) y(0)+C_{0} y^{2}(0)=1
$$

Therefore

$$
x\left(t_{0}\right)=-\sqrt{\frac{\overline{C\left(l_{0}\right)}}{\Delta\left(t_{0}\right)}} \leqslant M
$$

The arbitrariness of t_{0} is still to be taken into account.
In a similar way we can deduce from (7) that a necessary and sufficient condition for the stability of the trivial solution of the system (2) relative to y is the boundedness of $A(t) / \Delta(t)$ on $(0, \infty)$. Next, suppose that $s(t)$ is an arbitrary function which is positive and has a continuous derivative on $(0, \infty)$. Let us set
$\left.\lambda(t)=\frac{1}{\sqrt{s(l)}} \exp \int_{0}^{t}\left\{a_{11}+a_{22}-\cdots\left(\frac{\dot{s}}{2 s}+a_{11}-a_{22}\right)^{2}+\frac{\left(a_{21}+\dot{c} a_{12}\right)^{2}}{s}\right]^{1 / 2}\right\} d \tau$
Then

$$
\begin{equation*}
\frac{\dot{\lambda}}{\lambda}=-\frac{s}{2 s}+a_{11}+a_{22}-\left[\left(\frac{\dot{s}}{2 s}+a_{11}-a_{22}\right)^{2}+\frac{\left(a_{21}-+s a_{12}\right)^{2}}{s}\right]^{1!} \tag{10}
\end{equation*}
$$

For the purpose of simplifying the formulas we set

$$
\begin{equation*}
\alpha=-\dot{\lambda}+2 \lambda a_{11}, \quad \beta=-\lambda\left(a_{21}+s a_{12}\right), \quad \gamma=-\lambda s-\lambda \dot{s}+2 \lambda s a_{2} \tag{11}
\end{equation*}
$$

From (10) we easily obtain

$$
\begin{gather*}
\alpha=\lambda\left\{\left[\left(\frac{\dot{s}}{2 s}+a_{11}-a_{22}\right)^{2}+\frac{1}{s}-\left(a_{21}+s a_{12}\right)^{2}\right]^{1 / 2} 1-\frac{\dot{s}}{2 s}+a_{11}-a_{22}\right\} \geqslant 0 \\
\gamma=\lambda s\left\{\left[\left(\frac{\dot{s}}{2 s}+a_{11}-a_{22}\right)^{2}+\frac{1}{s}\left(a_{21}+s a_{12}\right)^{2}\right]^{1 / 2}-\frac{\dot{s}}{2 s}-a_{11}+a_{22}\right\} \geqslant 0 \tag{12}\\
\alpha \gamma-\beta^{2}=0
\end{gather*}
$$

Let $J(t)=\lambda(A+s C)$. Taking into account (4), we have

$$
\dot{J}(t)=\dot{\lambda}(A+\mathrm{s} C)+\lambda(\dot{A}+\mathrm{s} \dot{C}+\dot{\mathrm{s}} C)=-\alpha A+2 \beta B-\gamma C
$$

If the function $\boldsymbol{a}(\boldsymbol{t})$ vanishes for some value of t, then $\beta(t)$ vanishes also at this point (see (12)). In this case $J(t)=-\gamma C \leqslant 0$. It is easily verified that for $a(t) \neq 0$, the following equation holds:

$$
\dot{J}(t)=-\frac{(A \alpha-B \beta)^{2}}{A \alpha}-\frac{\gamma}{A}\left(A C-B^{2}\right) \leqslant 0
$$

We have thus proved that $J(t) \leqslant 0$ when $t>0$. Hence, $J(t) \leqslant J(0)$. Taking into account (6) and (9), we obtain

$$
\begin{gathered}
\frac{C(t)}{\Delta(t)} \leqslant \frac{J(t)}{\lambda(t) s(t)} \frac{1}{\Delta(0)} \exp \left[2 \int_{0}^{i}\left(a_{11}+a_{22}\right) d \tau\right] \leqslant \\
\leqslant \frac{J(0)}{\Delta(0) \sqrt{s(0)}} \exp \int_{0}^{t}\left\{\left[\left(\frac{\dot{s}}{2 s}+a_{11}-a_{22}\right)^{2}+\frac{1}{s}\left(a_{31}+s a_{12}\right)^{2}\right]^{1 / 2}-\frac{s}{2 s}+a_{11}+a_{22}\right\} d \tau
\end{gathered}
$$

This inequality implies the following theorem.
Theorem. If there exist a positive function $s(t)$ which has a continuous derivative on $(0, \infty)$, and a constant M such that

$$
\begin{equation*}
\int_{0}^{t}\left\{\left[\left(\frac{\dot{s}}{2 s}+a_{11}-a_{22}\right)^{2}+\frac{1}{s}\left(a_{11}+s a_{12}\right)^{2}\right]^{1 / 2}-\frac{\dot{s}}{2 s}+a_{11}+a_{22}\right\} d \tau \leqslant M \tag{13}
\end{equation*}
$$

for all $t>0$, then the trivial solution of the system (2) is stable relative to x.

In an analogous way one can establish a sufficient condition for the stability of the trivial solution of the system (2) relative to y :

$$
\begin{equation*}
\int_{0}^{1}\left\{\left[\left(\frac{\dot{s}}{2 s}+a_{11}-a_{22}\right)^{2}+\frac{1}{s}\left(a_{21}+s a_{12}\right)^{2}\right]^{1 / 2}+\frac{\dot{s}}{2 s}+a_{11}+a_{22}\right\} d \tau \leqslant M \tag{14}
\end{equation*}
$$

Let us consider some particular criteria which can be deduced from the theorem just proved.

1. If a_{21} / a_{12} is negative and has a continuous derivative on ($0, \infty$).
then one can set $s=-a_{21} / a_{12}$. The sufficient condition for stability relative to x of the trivial solution of the system (2) can be written in the form

$$
\int_{0}^{1}\left[\left|a_{11}-a_{22}+\frac{a_{12}}{2 a_{21}} \frac{d}{d \tau}\left(-\frac{a_{21}}{a_{12}}\right)\right|+a_{11}+a_{22}--\frac{a_{12}}{2 a_{21}} \frac{d}{d \tau}\left(\frac{a_{21}}{a_{12}}\right)\right] d \tau \leqslant M
$$

In particular, if one reduces Equation (1) to the system (2), then the last condition takes the form

$$
q(t)>0, \quad \int_{0}^{\infty}\left[\left|p+\frac{\dot{q}}{2 q}\right|-\left(p+\frac{\dot{q}}{2 q}\right)\right] d \tau<\infty
$$

This sufficient condition of stability relative to x is a generalization of the conditions of Leonov mentioned at the beginning of this note.
2. For the differential equation (1) the inequality (13) can be written in the form

$$
\int_{0}^{t}\left\{\left[\left(p+\frac{s}{2 s}\right)^{2}+\frac{(q-s)^{2}}{s}\right]^{1 / 2}-p-\frac{\dot{s}}{2 s}\right\} d \tau \leqslant M
$$

This gives rise to the following criterion: if there exists a positive function $s(t)$, which has a continuous derivative on $(0, \infty)$ and satisfies the condition

$$
\int_{0}^{\infty} \frac{|q-s|}{\sqrt{s}} d t<\infty, \quad \int_{0}^{\infty}\left[\left|p+\frac{\dot{s}}{2 s}\right|-\left(p+\frac{\dot{s}}{2 s}\right)\right] d t<\infty
$$

then the trivial solution of the system (2) is stable relative to x.
3. If there exists a constant $\sigma>0$ satisfying the requirement

$$
\int_{0}^{\infty}\left|a_{21}+\sigma a_{12}\right| d t<\infty
$$

then by setting $s(t)=\sigma$ we obtain a sufficient condition for the stability of the trivial solution of the system (2) relative to x and y in the form

$$
\int_{0}^{l}\left(\left|a_{11}-a_{22}\right|+a_{11}+a_{22}\right) d \tau \leqslant M \text { when } t>0 \quad\left(M \text { is an arbitrary } \begin{array}{c}
\text { constant })
\end{array}\right.
$$

The formulation of criteria of stability relative to y, which are analogous to those in 1 and 2 , does not present any difficulties.

BIBLIOGRAPHY

1. Starzhinskii, V.M., Obzor rabot ob usloviiakh ustoichivosti (Survey of works on conditions of stability). PMM Vol. 28, No. 4, 1954.
2. Leonov, M.Ia., O kvazigarmonicheskikh kolebaniiakh (On quasiharmonic oscillations). PMM Vol. 10, Nos. 5-6, 1946.
3. Ginzburg, I.P., 0 dostatochnykh usloviiakh ustoichivosti reshenii uravnenila $y^{\prime \prime}+p^{\prime}+q y=0$ (On sufficient conditions of the stability of the solution of the equation $y^{\prime \prime}+p y^{\prime}+q y=0$). Uch. zap. LGU, Mekhanika No. 114, Vyp. 17, 1949.
4. Starzhinskii, V.M., Dostatochnye usloviia ustoichivosti odnoi mekhanicheskoi sistemy s odnoi stepen'iu svobody (Sufficient conditions of stability of a mechanical system with one degree of freedom). PMM Vol. 16, No. 3, 1952.
